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A11 systems possessing mass and elasticity are capable of free Vibration, 01‘ Vibration

that takes place in the absence of external excitation. Of primary interest for sucha

system is its natural frequency of vibration. Our Objectives here are to learn to write

its equation Of motion and evaluate its natural frequency, which is mainly a  function

of the massand stiffness of the system.

Damping in moderate amounts has little influence  on  the natural frequency

and may be neglected in its calculation. The system can then be considered to be

conserva—tive, and the principle of conservation of energy Offers another approach to

the calcula—tion 0f the natural frequency. The effect of damping is mainly evident in

the diminishing 0f the vibration amplitude with time.Although there are many models

of damping, only those that lead to Simple analytic procedures are considered in this

Chapter.

2.1  VIBRATION MODEL

The basic vibration model of  a  simple oscillatory system consists Of a mass, 21 massless

Spring, and a damper. The massis considered to be lumped and measured in the SI sys—
tem as kilograms. In the English system, the massis  m =  w/g 1b  -  SZ/ifl.

The Spring supporting the mass is assumed to be of negligible  mass.  Its force-

deflection relationship is considered to be linear, following Hooke’s law,F  =  kx, where

the stiffness  k  is measured in newtons/meter 01' pounds/inch.

file viscousdamping, generally represented by a dashpot, is described by a

force proportional to the velocity, 01' f  =  Ci.The damping coefficient  c  is measured in

newtons/ meter/ second 01' pOUHdS/iflCh/SCCODd.

2.2  EQUATIONS  OF  MOTION: NATURAL FREQUENCY

Figure 2.2.1 showsa simple undamped spring-mass system, which is assumed to move

only along the vertical direction. It has 1 degree of freedom (DOF), because its motion

is described by a  single coordinate x.
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FIGURE 2.2.1. Spring-mass system and free-body diagram.

When placed into motion, oscillation will take place at the natural frequencyf,
1

,

which is a property of the system. We now examine some of the basic concepts associ­
ated with the free vibration of systems with 1 degree of freedom.

Newton's second law is the first basisfor examining the motion of the system. As
shown in Fig. 2.2.1 the deformation of the spring in the static equilibrium position is Ll,
and the spring force kD. is equal to the gravitational force w acting on massm:

kil = w = mg (2.2.1)

By measuring the displacementx from the static equilibrium position, the forces act­
ing on mare k(D. + x) andw.With x chosen to be positive in the downward direction,
all quanti ties-force , velocity, and acceleration-are also positive in the downward
direction.

We now apply Newton's second law of motion to the mass m:

mx·= 2. F = w - k(D. + x)

and because kb. = w, we obtain
..

nix= -kx (2.2.2)

It is evident that the choice of the static equilibrium position as reference for x has elimi­
nated w, the force due to gravity, and the static spring force k/1 from the equation of
motion, and the resultant force on m is simply the springforce dueto the displacementx.

By defining the circular frequency w
11

by the equation

kw;,= (2.2.3)
111

Eq. (2.2.2) can be wri tten as

(2.2.4)

and we conclude by comparison with Eq. (1.1.6) that the motion is harmonic. Equa­
tion (2.2.4), a homogeneous second-order linear diffe rential equation, has the follow­
ing general solution:

x = A sin w,/ + B cosw j (2.2.5)

where A and B are the two necessary constants. These constants are evaluated from
initial conditions x(O)and x(O),and Eq. (2.2.5) can be shown to reduce to
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x(O) . 
x = -- sm w,/ + x(O) cos w11 t 

lr)!l 

TI1e natural period of the oscillation is established from w11 r = 21r, or 

and the natural frequency is 

(2.2.6) 

(2.2.7) 

(2.2.8) 

These quantities can be expressed in terms of the statical deflection 6. by observing 
Eq. (2.2.1), k6. = mg. Thus, Eq. (2.2.8) can be expressed in terms of the statical deflec­
tion 6. as 

(2.2.9) 

Note that r, .fi
1

, and w
11 

depend only on the mass and stiffness of the system, which are 
properties of the system. 

Although our discussion was in terms of the spring-mass system of Fig. 2.2.1, the 
results are applicable to all single-DOF systems, including rotation. The spring can be a 
beam or torsional member and the mass can be replaced by a mass moment of inertia. 
A table of values for the stiffness k for various types of springs is presented at the end 
of the chapter. 

EXAMPLE 2.2.1 

A ¼-kg mass is suspended by a spring having a stiffness of 0.1533 N/mm. Determine its natural 
frequency in cycles per second. Determine its statical deflection. 

Solution The stiffness is 

le= 153.3 N/m 

By substituting into Eq. (2.2.8), the natural frequency is 

f = l_ /k = _1 / 153.3 = 3.941 Hz 
27T V ; 27T \ 0.25 

TI1e statical deflection of the spring suspending the ¼-kg mass is obtained from the relationship 
,ng = k/:J. 

EXAMPLE 2.2.2 

/:J. = mg 
kN/mm 

0.25 X 9.81 
= 16.0mm 

0.1533 

Ill 

Determine the natural frequency of the mass M on the end of a cantilever beam of negligible 
mass shown in Fig. 2.2.2. · 
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FIGURE 2.2.2. 
; 
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n - X 
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Solution The deflection of the cantilever beam under a concentrated end force P is 

p[3 p 
x= - = -

3EI k 

where EI is the flexural rigidity. Thus, the stiffness of the beam is k = 3El;l3, and the natural fre­
quency of the system becomes 

EXAMPLE 2.2.3 

1 
!,, = 21r Ml 3 

An automobile wheel and tire are suspended by a steel rod 0.50 cm in diameter and 2 m long, as 
shown in Fig. 2.2.3. When the wheel is given an angular displacement and released, it makes 10 
oscillations in 30.2 s. Determine the polar moment of inertia of the wheel and tire. 

T 
£ 

J 

FIGURE 2.2.3. 

Solution The rotational equation of motion corresponding to Newton's equation is 
.. 

10 = - Ke 

where J is the rotational mass moment of inertia, K is the rotational stiffness, and 0 is the angle 
of rotation in radians. Thus, the natural frequency of oscillation is equal to 

10 
w,, = 21r- = 2.081 rad/s 

30.2 

The torsional stiffness of the rod is given by the equation K = GIP ll, where Ip = 1Td-1 /32 = 
polar moment of inertia of the circular cross-sectional area of the rod, l = length. and 
G = 80 X 109 N/m2 = shear modulus of steel. 

IP = 
3
~ (0.5 X 10- 2)4 = 0.006136 X 10- 8 m4 

80 X 109 X 0.006136 X 10-8 

K = 
2 

= 2.455 N · m/racl 
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By substituting into the natural frequency equation, the polar moment of inertia of the wheel 
and tire is 

]= 

EXAMPLE 2.2.4 

f( 

2 w,, 

2.455 
= 0.567kg · m2 

(2.081)2 

Figure 2.2.4 shows a uniform bar pivoted about point O with springs of equal stiffness k at each 
end. The bar is horizontal in the equilibrium position with spring forces P1 and P2• Determine the 
equation of motion and its natural frequency. 

FIGURE 2.2.4. 

Solution Under rotation 0, the spring force on the left is decreased and that on the right is 
increased. With J

O as the moment of inertia of the bar about O, the moment equation about O is 

M 0 = (P 1 - ka0)a + mgc - (P2 + kb0)b = 10 0 
However, 

P 1a + mgc - P2b = 0 

in the equilibrium position, and hence we need to consider only the moment of the forces due to 
displacement 0, which is 

M0 = (-ka2 
- kb2)0 = 10 0 

Thus, the equation of motion can be written a~ 

·· k(a2 + b2
) 

0+---0=0 
.la 

and, by inspection, the natural frequency of oscillation is 

/ k(a2 + b2) 
wn = \ la 

2.3 ENERGY METHOD 

Ill 

In a conservative system, the total energy is constant, and the differential equation of 
motion can also be established by the principle of conservation of energy. For the free 
vibration of an undamped system, the energy is partly kinetic and partly potential. TI1e 
kinetic energy T is stored in the mass by virtue of its velocity, whereas the potent'ial 
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energy U is stored in the form of strain energy in elastic deformation or by a spring or 
work done in a force field such as gravity. The total energy being constant, its rate of 
change is zero, as illustrated by the following equations: 

T + U = constant 

d 
-(T + U) = 0 
dt 

(2.3.1) 

(2.3.2) 

If our interest is only in the natural frequency of the system, it can be determined 
by the following considerations. From the principle of conservation of energy, we can 
write 

(2.3.3) 

where 1 and 2 represent two instances of time. Let 1 be the time when the mass is pass­
ing through its static equilibrium position and choose U1 = 0 as reference for the 
potential energy. Let 2 be the time corresponding to the maximum displacement of the 
mass. At this position, the velocity of the mass is zero, and hence T2 = 0. We then have 

(2.3.4) 

However, if the system is undergoing harmonic motion, then T1 and U2 are maximum 
values, and hence 

(2.3.5) 

The preceding equation leads directly to the natural frequency. 

EXAMPLE 2.3.1 

Determine the natural frequency of the system shown in Fig. 2.3.1. 

m 
Figure 2.3.1. 

Solution Assume that the system is vibrating harmonically with amplitude 0 from its static 
equilibrium position. The maximum kinetic energy is 

TillclX = [½10 2 + !m(r10)2Lax 
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The maximum potential energy is the energy stored in the spring, which is 

Equating the two, the natural frequency is 

The student should verify that the loss of potential energy of m due to position r1 e is can­
celed by the work done by the equilibrium force of the spring in the position e = O'. 


